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1 . Introduction

The National Statistician’s Data Analysis and Methods  in privacy and data confidentiality identified review
differential privacy as one of the potential tools the Office for National Statistics (ONS) could employ to provide 
more transparent and well-defined levels of protection to data. Reconstruction attacks by  have Dinur and Nissim
shown that traditional statistical disclosure control methods, such as record swapping might not provide sufficient 

 to tabular data. Differentially private data are not vulnerable to reconstruction attacks, therefore protection
differential private methods might prove essential to obtain respondents’ confidence in the statistical institute.

The ONS is firmly committed to applying cutting-edge statistical disclosure control methods to get respondents’ 
trust and keep survey response rates high. Exploring differential privacy and its applications must therefore be a 
significant part of the ONS disclosure control workplan in the coming years. The present paper explores how the 
ONS might implement simple differentially private methods to release frequency tables. Providing a broad outlook 

 is out of the scope of this paper.on differential privacy in the context of frequency tables

The purest definition of differential privacy has a single parameter epsilon () to indicate the level of protection, 
lower values of  indicate more protection. Many methods can fulfil the definition, one of which is the addition of 
noise from a Laplace distribution. The Laplace mechanism perturbs frequencies to fractions and therefore some 
adjustment, for example rounding, needs to be applied to produce an output that is credible for users. Such 
adjustments preserve the differentially private property of the output since they can be considered post-

. This paper explores a relatively simple Laplace implementation, and identifies processing (PDF, 2,081KB)
practical drawbacks. The , and , were also applied, though results are geometric mechanism Gaussian mechanism
not presented here.

A differential privacy pilot was run on mortality data within the ONS secure environment. Outputs were produced 
using two different differential privacy approaches. The first approach was to directly add noise to frequency table 
counts, for a range of tables and  values. This approach is similar to another post-tabular noise method, cell-key 
perturbation, with two major differences.

The first difference is the privacy budget. In the differential privacy paradigm, each output contributes to the 
overall disclosure risk. In practice often the overall  for a given set of outputs is determined first; we call it the 
privacy budget. A fraction of the whole budget is then allocated to each output. For a total budget of  and 10 
frequency tables, for example, uniform allocation of the budget means applying a differentially private random 
mechanism with parameter /10 to each table. Non-uniform allocation of the privacy budget is also possible. 
Publications with a limited number of outputs, known ahead of time will be better suited to this kind of budgeting. 
Further releases of data increase the amount of budget used and weakens the privacy guarantee.

The second difference concerns the perturbation of zeros. To meet the differential privacy standard, zero cells 
need to be treated like all other cells. This might result in negative noise given to zero cells, and apparent 
negative cell counts. Post-processing can be used to ensure non-negativity of all cells, but a direct correction (for 
instance, rounding up negative cells to zero) will lead to a systematic bias. In cell key perturbation the noise 
applied depends on the cell value such that cells do not receive negative noise larger than their original value. 
Zeros are treated differently to other cells and do not receive negative noise.

The second, “top-down” method creates a set of microdata from post-noise frequency tables. The microdata as a 
whole is produced within the  budget, so any number of outputs can be produced without exceeding a fixed 
budget. The idea of this approach follows the  for Census 2020, to work the US Census Bureau have carried out
protect against the risk of reconstruction attacks. Under differential privacy, zeros and small counts still need to 
be treated like other cells, which leads to a significant bias issue in our implementation. This approach may be 
impractical using a large number of variables. The process would become computationally intensive, though this 
constraint will likely ease in future with increased processing capacity. In a hypothetical scenario with more than 
50 variables, considering such a level of detail would distinguish essentially every record as unique. A frequency 
table of this detail would consist of only zeros and ones (no or one person with this combination of 
characteristics) and it would be difficult for noise to affect the counts to provide protection without overpowering 
them entirely, especially if it is assumed the post-noise counts would need to be integers in which case the noise 
added to each cell would be minus 1, plus 1, or greater.

https://gss.civilservice.gov.uk/policy-store/privacy-and-data-confidentiality-methods-a-national-statisticians-quality-review-nsqr/
https://dl.acm.org/doi/10.1145/773153.773173
https://dl.acm.org/doi/10.1145/3291276.3295691
https://dl.acm.org/doi/10.1145/3291276.3295691
https://projecteuclid.org/journals/statistical-science/volume-33/issue-3/Confidentiality-and-Differential-Privacy-in-the-Dissemination-of-Frequency-Tables/10.1214/17-STS641.short
https://projecteuclid.org/journals/statistical-science/volume-33/issue-3/Confidentiality-and-Differential-Privacy-in-the-Dissemination-of-Frequency-Tables/10.1214/17-STS641.short
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://timroughgarden.org/papers/priv.pdf
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://arxiv.org/abs/1809.02201


Page 3 of 19

2 . Differential privacy

A randomised mechanism M is defined as providing  differential privacy if for all datasets D, D’, which differ by 
only one record, for all S  range(M):

Between any two sets of data that differ by only one record, the ratio of probabilities of getting the same result is 
bounded by exp(). In other words, the data release process is nearly equally likely to get the same result, even if 
you add or remove one record from the original data. The definition encourages a member of the public to fill in 
and return their survey form. Under differential privacy, the act of returning the form is guaranteed to make nearly 
no difference to the statistics and results produced, while the collective survey results will still provide insight and 
value. The bound on the ratio is tightest with small  values. Small values of  (less than one) imply strong 
protection, larger values imply weaker protection. Practical uses of differential privacy, for example, the Disclosure 

, or Avoidance System of the US Census Bureau, an approach developed by Apple an example for protecting 
, have had values between 1-8. The choice of  is a policy survey weighted frequency tables (PDF, 1,294KB)

decision.

Figure 1: Illustration of differential privacy definition - Laplace noise

By virtue of the shape of Laplace noise, it can be shown that, for frequency tables, the ratio of P(M(D)) to P(M
(D’)) is always less than exp() where the noise produced is Laplace(1/), therefore meeting the definition. 
Reducing  reduces the allowed relative distance between the two curves and increases the magnitude of noise 
(flattening the Laplace curves).

Differential privacy provides a strong guarantee of privacy that in its simplest form can be summarised in one 
parameter. It has also been described as a formal guarantee of privacy and referred to as a “formal privacy” 
method. It forms a worst-case scenario, assuming intruders hold large amounts of private knowledge and employ 
sophisticated attacks. Unlike in the case of traditional statistical disclosure control methods, releasing the 
parameter does not affect the level of protection, the release of  values is strongly encouraged in the principle of 
transparency, and to help users evaluate and account for the impact the protection has on results.

https://link.springer.com/chapter/10.1007/978-3-030-57521-2_25#:~:text=The%202010%20Demonstration%20Data%20Product%20was%20the%20Census%20Bureau's%20third,routines%20required%20to%20enforce%20constraints.
https://link.springer.com/chapter/10.1007/978-3-030-57521-2_25#:~:text=The%202010%20Demonstration%20Data%20Product%20was%20the%20Census%20Bureau's%20third,routines%20required%20to%20enforce%20constraints.
http://www.tdp.cat/issues16/tdp.a329a18.pdf
http://www.tdp.cat/issues16/tdp.a329a18.pdf
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3 . Comparing differential privacy with traditional disclosure 
control methods

Although the measurement of protection differs between differential privacy and traditional disclosure control, 
achieving differential privacy through post-tabular noise addition is very similar to other post-tabular perturbation 
methods including cell-key perturbation.

In this section we consider the impact of epsilon, and how the values would compare with a perturbation rate 
used in cell-key perturbation. We look at what proportion of cells in a single frequency table would receive (non-
zero) noise in a differential privacy setting, using a range of epsilon values. For the Laplace and Gaussian 
mechanisms, we assume that rounding to the nearest integer is carried out after noise addition. A cell remains 
unchanged if the noise added to the cell (without rounding) is larger than (-0.5) and smaller than 0.5. If the noise 
variable is Y, and its cumulative distribution function (CDF) is F(y), the probability of zero noise is:

The cumulative distribution function of the Laplace(1/) distribution is

The probability of zero noise is

The probability of a cell being changed is

The following table summarises the probabilities for five different  values.

Table 1: Laplace noise probabilities

  0.1  1  2  5  10 

1  exp ( /2)    0.0488  0.3935  0.6321  0.9179  0.9933 

exp ( /2)   0.9512  0.6065  0.3679  0.0821  0.0067 

Source: Office for National Statistics

On a single table with Laplace(1/) noise added, for  = 0.1, an expected 4.9% of cells would remain unchanged. 
For =10, an expected 99.3% of cells would remain unchanged.

Equivalent probabilities can be calculated using the Gaussian and Geometric cumulative distribution functions:

Table 2: Gaussian noise probabilities

  0.1  1  2  5  10 

P(cell value is unaltered) 0.0157  0.1562  0.3065  0.6755  0.9512 

1P(cell value is unaltered) 0.9843  0.8438  0.6935  0.3245  0.0488 

Source: Office for National Statistics
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Table 3: Geometric noise probabilities

0.1 1 2 5 10

P(cell value is unaltered) 0.05 0.4621 0.7616 0.9866 0.9999

1P(cell value is unaltered) 0.95 0.5379 0.2384 0.0134 0.0001

Source: Office for National Statistics

These calculations provide a broad idea of how much perturbation is involved using a range of epsilon values. 
These will not act as a direct equivalence, particularly considering the privacy budget when multiple outputs are 
produced, and the perturbation of zeros and small counts which are treated differently to other cells in cell-key 
perturbation.

4 . Differential privacy pilot

One of the recommendations of the National Statistician’s Data Analysis and Methods review on privacy and 
confidentiality was that the Office for National Statistics (ONS) should run a differential privacy pilot study, on low-
sensitivity data. We have applied differential privacy protection to outputs on mortality data, within a secure 
environment. Mortality data was chosen as it covered a complete population rather than being a sample and 
contained a large enough population to produce a wide range of outputs without being burdensome to process. 
The microdata contained one record for each death registered in England and Wales in 2018, approximately 
541,000 in total. Each record contained some demographic information of the deceased including age, sex, and 
area of residence, alongside information such as date and cause of death.

Method 1: “Independent noise addition”

Differential privacy is not a specific protection method, several methods can be shown to meet the definition of 
differential privacy, though the addition of Laplace noise is common. The simplest form which we refer to as 
“independent noise” method, is to produce frequency tables and add noise to the table counts. In a similar way to 
the cell-key perturbation method, totals will not be consistent between different tables and additivity will not be 
preserved between levels in a hierarchy if calculated independently. Post-processing could be applied within the 
differential privacy definition to re-establish consistency, additivity for such tables. There are many potential 
approaches to this post-processing and a simple implementation is the focus here. As well as Laplace, noise 
generated from a Gaussian and geometric mechanism can also be shown to fit the differentially private definition 

.(PDF, 2,081KB)

Privacy budget

Frequency tables produced in this way individually meet the differential privacy standard and each have a value 
of epsilon. However, each release of a table is a separate source of data and adds to the total  budget of the 

. If we decided on a budget of  of 10 for a dataset, this would allow releasing of 10 tables release (PDF, 470KB)
each with use of  of one, or 100 tables with  of 0.1. To guarantee a budget of  would not be exceeded, it would be 
necessary to have a fixed number of outputs.

Perturbation of zeros

The second issue with applying differential privacy is the way zeros need to be treated. Zeros need to be given 
noise in the same way as any other cell. Consider a respondent choosing whether or not to return their form. 
Assume that this respondent is unique so that if they return their survey the cell containing them would be a ‘1’. 
Not responding, this cell would be ‘0’. Without perturbation of zeros, the cell would certainly be ‘0’ under a non-
response. The cell would never take a value of 1, 2… so the ratio of probabilities will be outside the range 
allowed by the definition.

https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_0.pdf
https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_0.pdf
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If zeros are perturbed, larger tables at low geography may be heavily affected. Sparse tables at low geographies 
can contain mostly zero values, in which case the majority of noise is given to zero-cells. This is a helpful feature 
for reducing disclosure risk and introducing more uncertainty on small counts, but often carries a 
disproportionately high utility cost.

Negative values and bias

The other related issue is how to treat apparent negative values. When zero-cells or small counts receive noise, 
the result can be a negative value. In the purest form of differential privacy negative values would be released to 
the end user, but post-processing is possible within the differential privacy framework. Negative values could be 
rounded up to 0 without compromising the protection, however this would result in an overall positive bias that 
would need to be either reported or adjusted for elsewhere in the table, which, depending on the scale of the 
noise may be difficult to compensate for.

Method 2: “Top-down method”

A more sophisticated method can also be considered, which could be described as having parallels with synthetic 
data. The principle is that noise is added to a large table at national geography, then the values are 
disaggregated to lower levels (for example, national, regional, local).

To meet the differential privacy standard, noise needs to be added at every level of geography. This can also be 
thought of as adding noise to any data included in the process. This produces a set of constraints for each level 
of geography, which could be solved simultaneously or sequentially. The US Census Bureau intend to use a large 

 and match constraints at all geography hierarchy levels. Some structural optimisation program (PDF, 10,195KB)
zeros are imposed using some of the  budget. Releasing analysis of how outputs from the differentially private 
data compare to outputs from the pre-protection data also expends some  budget. A simpler method applied here 
matches constraints at the highest geographies first, then considers these to be fixed when producing lower 
levels. Details are shown in Figure 2.

https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf
https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf
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Figure 2: Top-down method illustration

Source: Office for National Statistics

The top-down method aims to produce a differentially private microdata set (it could also be thought of as a large 
hypercube) where each cell has been influenced by differentially private noise (for example Laplace noise). The 
microdata set itself will be differentially private, so that an unlimited number of outputs could be produced without 
going over an  privacy budget, and all outputs will be additive and consistent with each other.

Starting at “the top”, the highest aggregate of total population has noise added, and the count is rounded to a 
whole number. This is the new population total. Next, the frequency table of all variables is produced at national 
geography level (no geography breakdown). Noise is added to this table, and totals are adjusted to match the 
new total population size. Each value is multiplied by the new population size and divided by the total of post-
noise values. This is analogous to disaggregating the total population into cells based on the post-noise national 
table.
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Similarly, the table of all variables is split by a geography breakdown, noise is added, then adjusted to match the 
national level counts (and rounded to whole numbers). A table can be produced at a low level of geography, then 
adjusted to higher geography counts.

Note that the tables are additive to the upper level in the hierarchy after the adjustment but are not integer values. 
Basic rounding would often alter the totals and ruin the additivity, so a smarter form of rounding needs to be 
applied which preserves totals/sub-totals. A “maximum remainder method” was used, but alternatives are 
available.

Table 4: Frequency tables produced in pilot

Table 
Number

Geography Variables

1 Clinical Commission group (CCG) Cause of death Age Sex

2 CCG Cause of death Month of death Sex

3 CCG Cause of death Marital Status Sex

4 CCG Month of death Age

5 CCG Month of death Marital Status

6 CCG Cause of death

7 CCG Age

8 CCG Sex

9 CCG Month of death

10 CCG Marital Status

11 Region Cause of death Age

12 Region Cause of death Month of death

13 Region Cause of death Sex

14 Region Month of death Sex

Source: Office for National Statistics

These are the tables produced using independent noise and tabulated from the “top-down” generated microdata. 
The numbers of categories are summarised in Table 5.
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Table 5: Numbers of categories used in mortality data variables

Variable Number of categories

Region
13 (includes Scotland, 
Northern Ireland, and 
missing/unknown)

Clinical Commission
Group (CCG)

251

Sex 2

Age bands 10

Marital Status 6

Months 
of death

12

Cause of 
death (ICD10U)

15

Source: Office for National Statistics

Having no multiplicative adjustment, the independent noise method adds less noise overall than the top-down 
method and is likely to provide better utility on a table by table basis. However, it is still unclear how best to deal 
with zeros (which often produce negative counts) and has the additional drawback of requiring a limited number 
of outputs to be produced to fit within an  privacy budget.

5 . Quantitative results

To investigate the bias issue, transition matrices were produced for each table (for each type of noise added, for 
each value of ). The matrices show change in cell counts - numbers of deaths - before and after the method was 
applied to specify what the cell counts represent. The top matrix (Table 6) is a reasonable result with most cells 
having small changes applied, and counts clearly centred around the diagonal, on which cells stay broadly the 
same value. The bottom matrix (Table 7) is a very poor result observed after using the top-down method. After 
applying the method, all small counts were now observed as large, with no counts below 25 in the post-method 
table. This is believed to be the result of systematic bias described in Table 8.
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Table 6: Transition matrix – desirable results

Observed

Actual 0 1 2 3 4 5-10 11-25 26-50 51-100 101-1000 1000+

0 622 300 129 64 52 78 11 8 6 0 0

1 63 58 47 18 13 30 6 0 3 0 0

2 20 20 25 13 11 30 8 1 0 0 0

3 5 17 19 18 21 31 3 1 1 0 0

4 4 8 17 13 16 52 8 0 0 0 0

5-10 2 16 31 34 43 201 112 10 3 0 0

11-25 1 3 6 8 6 110 328 129 11 0 0

26-50 0 0 0 0 1 8 99 269 78 2 0

51-100 0 0 0 0 0 1 3 73 312 84 0

101-1000 0 0 0 0 0 0 0 3 64 1034 2

1000+ 0 0 0 0 0 0 0 0 0 6 56

Source: Office for National Statistics

Table 7: Transition matrix – poor results

Observed

Actual 0 1 2 3 4 5-10 11-25 26-50 51-100 101-1000 1000+

0 0 0 0 0 0 0 0 23 387 431 0

1 0 0 0 0 0 0 0 7 87 78 0

2 0 0 0 0 0 0 0 1 27 41 0

3 0 0 0 0 0 0 0 4 16 23 0

4 0 0 0 0 0 0 0 2 13 25 0

5-10 0 0 0 0 0 0 0 4 89 101 0

11-25 0 0 0 0 0 0 0 6 158 139 0

26-50 0 0 0 0 0 0 0 5 103 142 0

51-100 0 0 0 0 0 0 0 11 99 192 0

101-1000 0 0 0 0 0 0 0 0 47 666 0

1000+ 0 0 0 0 0 0 0 0 0 192 0

Source: Office for National Statistics
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Table 8: Counts of region, before and after top-down method

With zeros Actual After

Region =10 =2 =0.1

NA - Unknown/missing 965 2509 7711 32563

E12000001 - North East 28075 28425 29551 38200

E12000002 - North West 71299 70582 67087 46605

E12000003 - Yorkshire and the Humber 51692 51260 49579 41818

E12000004 - East Midlands 45015 44338 43530 40356

E12000005 - West Midlands 54562 54143 52287 43373

E12000006 - East 56406 55968 54104 43759

E12000007 - London 50541 49548 47367 42160

E12000008 - South East 81052 79785 75941 50629

E12000009 - South West 56667 56103 54139 44709

N99999999 - Northern Ireland 13 1716 7266 32742

S99999999 - Scotland 170 1827 7363 33704

W99999999 - Wales 33198 33352 33632 38962

Source: Office for National Statistics

Table 9: Counts of clinical commission groups (CCG), before and after top-down method

CCG Actual
After 
=10

=2 =0.1

NA 965 2509 7711 32563

E38000001 1732 1858 2072 1970

E38000002 1074 1278 1517 1200

E38000003 1654 1715 1749 1235

E38000004 1346 1398 1419 1280

… … … … …

ZC010 *<10 319 1341 6169

ZC020 *<10 345 1470 6774

ZC030 *<10 318 1358 6305

ZC040 *<10 321 1493 6634

ZC050 *<10 413 1604 6860

Source: Office for National Statistics
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Rare categories are extremely upward biased with this basic approach, particularly noticeable in Table 8 and 9 
with the ‘NA’, Scotland, and Northern Ireland categories for geography. The mortality data contain deaths 
registered within England and Wales, so there are relatively few deaths of Scottish or Northern Irish residents 
included, or where the geography is missing. The bias occurs in skewed data like this, as a result of perturbing 
zeros. When zeros receive negative noise, it is ultimately removed in order to avoid negative counts, but positive 
noise is unaffected.

Table 10: Counts of region, before and after top-down method without perturbing zeros

Without perturbing zeros After applying:

Region Actual =10 =2 =0.1

NA - Unknown/missing 965 1231 2953 9599

E12000001 - North East 28075 28571 31593 36867

E12000002 - North West 71299 71310 68588 62406

E12000003 - Yorkshire and the Humber 51692 51492 51619 50847

E12000004 - East Midlands 45015 44384 44306 43200

E12000005 - West Midlands 54562 54536 53892 52537

E12000006 - East 56406 56681 56166 52866

E12000007 - London 50541 50345 50643 62913

E12000008 - South East 81052 80394 76578 64191

E12000009 - South West 56667 56858 56758 54311

N99999999 - Northern Ireland 13 11 25 89

S99999999 - Scotland 170 218 518 996

W99999999 - Wales 33198 33526 35922 38828

Source: Office for National Statistics
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Table 11: Counts of clinical commission groups (CCG), before and after top-down method without perturbing 
zeros

Without 
perturbing
zeros

After 
applying:

CCG N =10 =2 =0.1

NA 965 1231 2953 9599

E38000001 1732 1793 2004 2016

E38000002 1074 1144 1182 764

E38000003 1654 1700 1721 1262

E38000004 1346 1343 1335 1241

... ... ... ... ...

ZC010 *<10 *<10 *<10 *<10

ZC020 *<10 *<10 *<10 31

ZC030 *<10 *<10 *<10 37

ZC040 *<10 *<10 *<10 *<10

ZC050 *<10 *<10 *<10 *<10

Source: Office for National Statistics

When noise is not added to zeros, the same effect still occurs with small counts as shown in Tables 10 and 11. 
Negative noise would have to be rounded up to avoid counts lower than zero. Positive noise is unaffected, 
leaving an overall positive bias. The effect is dramatically reduced by removing zeros, but it is still present. The 
effect is illustrated in Table 12 with representative numbers.

Table 12: Illustration of source of bias

Region var1 var2 Region count Noise Post-noise Adjustment Final

NA A A 2 0.1 2.1 1.68 2

NA A B 0 0.2 0.2 0.16 0

NA A C 0 -1.1 0.001 0.001 0

NA A D 1 1.4 2.4 1.92 2

NA A E 0 -0.9 0.001 0.001 0

NA B A 1 0.6 1.6 1.28 1

NA B B 0 -3.3 0.001 0.001 0

NA B C 0 -5.2 0.001 0.001 0

NA B D 1 4.3 5.3 4.24 4

NA B E 1 0.8 1.8 1.44 1

NA - - 6 - - - 10

Source: Office for National Statistics
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The current implementation prioritises counts at national level, then split by demographics, then split over the 
lower geography distributions (regional and clinical commission group level). The process could be re-ordered to 
preserve distribution by geographies over demographics, however the same effect would be shifted to categories 
of other variables. A similar bias was observed in separate work when perturbing zeros for census data. Rare 
categories, such as “widowed”, contained many zeros, which overall had an upward bias. Common categories, 
such as “married”, were involved in far fewer zeros, and so received a corresponding negative bias. To address 
this, zeros were perturbed only in certain cases, where the balance between categories was known to be fixed.

Utility metrics were calculated for a range of  values, for the 14 frequency tables. We define “On diagonal cells” 
as the percentage of cells that fall on the diagonal of a transition matrix shown above, a broad measure of 
similarity of cell counts pre- and post- differential privacy. In our implementation we used the following measures 
to quantify the information loss. We denote the original frequency table F = (F1, F2, …, FK) and the table after 
noise addition by M(D) = (M(D)1, M(D)2, …, M(D)K).

L1 distance or L1 norm of difference is the sum of absolute differences between original and perturbed cell 
values. The L1 distance is

L1 =

L2 distance or L2 norm of difference is the square root of sum of squared (absolute) differences. The 
formula for the L2 distance is

L2 =

Hellinger’s distance is a metric based on the difference of square roots of the original and perturbed cell-
values, its formula is

Hellinger’s distance was not calculated for the independent noise method, it is not valid for negative counts. It 
would need to be measured after any bias adjustment was performed.

Similar plots were also created for the top-down method in Figure 3, with some additions. The  budget does not 
need to be distributed evenly across the hierarchy levels in the top-down method (or evenly across tables in the 
independent noise method). In the pilot, we had four levels in the hierarchy. There were:

total deaths

national level deaths split by demographic variables

deaths at region split by demographic variables

deaths at clinical commission group split by demographic variables
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Although a proportional assignment of  by number of cells or average cell size seemed most logical, the top level 
has drastically fewer cells than all other levels and was given  values close to zero. This was fixed as 0.01 of total 
budget, and the rest was split proportional to square root of number of cells. (Proportional allocation to number of 
cells was deemed too skewed, with the lowest level still occupying a majority of the budget.) The  split from 
highest to lowest hierarchy level was 0.01, 0.05, 0.165, 0.775.

Figure 3: Percentage of cells relatively unchanged, top-down method, Laplace mechanism

Source: Office for National Statistics
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Figure 4: Decreasing L1 distance, top-down method, Laplace mechanism

Source: Office for National Statistics
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Figure 5: Decreasing L2 distance, top-down method, Laplace mechanism

Source: Office for National Statistics
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Figure 6: Decreasing Hellinger distance, top-down method, Laplace mechanism

Source: Office for National Statistics

The observed results show expected patterns with low  values associated with much greater levels of privacy 
protection and associated utility cost. Information loss is much higher for low values of , particularly values below 
1.

Information loss measured by L1 and L2 distances are much greater for the top down differential privacy method 
than for the independent noise alternative. This reflects the additional noise required to produce a differentially 
private microdata, from which any produced frequency table is  differentially private, over a set of pre-defined 
tables.

For sparse tables and skewed variables, zero cells often form the majority of a frequency table. In such cases, 
and as shown in this pilot, the majority of noise added, and associated information loss occurs within zero cells. 
How best to meet the standards of differential privacy with minimal information loss needs serious consideration 
and is a topic of future research.



Page 19 of 19

6 . Conclusion

Differential privacy provides a strong privacy guarantee and operates in a worst-case scenario. The guarantee is 
an  privacy budget, which considers the suite of outputs collectively. The independent noise addition method is 
best suited to releases with a limited set of outputs, known ahead of time.

The top-down method we attempted to apply suffered from significant bias issues, arising from perturbing small 
counts as well as perturbing zeros. Perturbing zeros increases the noise given and causes additional information 
loss (less utility). Assigning proportionally more epsilon to lower levels in the hierarchy also slightly reduced utility. 
This was possibly because as the adjustment to higher level totals were performed sequentially, higher level 
totals are more important. Assigning more epsilon to high levels may slightly improve results.

Applying the noise independently to frequency tables has the same problem to a much lesser extent. Adding 
noise to zeros or small cells introduces the possibility of negative counts and assuming we would remove these 
negative counts before publication by replacing with zero values, the upward bias introduced here would need to 
be adjusted for elsewhere in the table. The bias issue found and computational complexity for larger data 
currently prevents practical implementations of differential privacy at the ONS. Much research is being carried out 
on differential privacy and given its potential, we keenly await developments that overcome these obstacles.
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